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Abstract. We outline of new method enabling to determine the time transfer function and
the propagation direction of light rays in parametrized static, spherically symmetric space-
times. Explicit results up and including the third order in the Schwarzschild radius are given.

1. Introduction

We present a new method for determining the time transfer function and the propagation direction
of light rays in static, spherically symmetric space-times at any given order in the powers of
GM/c*r, M being the mass of the body generating the gravitational field and G the Newtonian
gravitational constant. In contrast with the procedures developed in [Le Poncin-Lafitte et al.
(2004) and Teyssandier & Le Poncin-Lafitte| (2008)), this method is based on the null geodesic
equations. The third-order terms are explicitly written. This study is motivated by the fact that a
knowledge of the corrections of higher orders is indispensable for an in-depth discussion of the
most accurate tests of the metric theories of gravity (see, e.g., Klioner & Zschockell2010; |Ashby
& Bertotti|2010). As far as we know, the main result of this paper is new since the travel time of
the photons was not determined in the previous works devoted to the third-order approximation
(Sarmientol 1982} [Keeton & Petters|2005)).

2. Time transfer function in static, spherically symmetric space-times

Assuming that the gravitational field is generated by a static, spherically symmetric body, we
consider a photon emitted at time 7, from an observer at point x, and received at time ¢, by an
observer at point x,. The travel time ¢, — #, of this photon is a function of x, and x;, so we can
put

ty =ty =T (X4, Xp), (D

7 (x4, x;) being called the time transfer function.
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In this paper, we restrict our attention to the determination of 7 (x,, x;) because it is shown
in [Le Poncin-Lafitte et all (2004) that the light propagation directions at points x, and x, are
characterized by the triples given by the relations

(l[ ) _ )W(XA, X5) (l[ ) _ _BT(anxu)
—| =c——— —| =—c— 2)
ly), oxl, lo ), oxl,

where [y and [; are the covariant components of a vector tangent to the ray, that is a system of
quantities defined by I, = gapdx?/dA, g, denoting the components of the metric tensor and A an
arbitrary parameter along the ray.

In what follows, the metric is written in isotropic coordinates:

ds* = A(r)ctdt* — B7(r) 6;;dx'dx’. (3)

Putting m = GM/c?, we suppose that the potentials are given by expansions in powers of
m/r:

2 2 3 3 4 —1) n 1
A(r) =12 popm _dpm gt | g Cling m' g

2 3 mt 00 n
=1+2y2 + €% + 173 + e ya + Xps(va — D, 4)

where B, 83, ... Bus s Vs € V3, -.os Vis ... are generalized post-Newtonian parameters defined so as
tohave 8 =y = € = 8, = v, = 1 in general relativity.
Assuming that 7 (x,, x;) admits an expansion as follows

s =% O e
Tx) = ===+ 3 7", x), 5)
n=1

where 7 stands for the term of order n in G, it is shown in Teyssandier & Le Poncin-Lafitte
(2008) that each term 7™ is given by an integral taken along the straight segment joining x, and
x;. For n = 1, one recovers the well-known Shapiro term, namely

+1 + 1+ X —
TW(x, x,) = LD g (At 5+ 10 = ) (©)
¢ not 1 — s — X
and for n = 2, one obtains the simple expression
2 2
- . +1
TO(x, x,) = T ey —x,| | Karccos(n,.ny) (v + 1) ’ e
Ty c |m, X ngl 1+n,.n,
where
8—48+8y+3
n, = ﬂ’ n, = ﬁ’ K= M (8)
i s 4

Nevertheless, determining the integrals yielding the quantities 7 (x,, x,) requires more and
more complex calculations as the order n is increasing. So it is of interest to explore some alter-
native procedures, like the one which is outlined below.
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3. Method of constrained integration

Using spherical coordinates (r, ¢, ¢) and choosing the axes in such a way that © = /2 along the
ray, the null geodesic equations may be written as

dt 1 r

&y )
dr cNAMB(r) \/rr — b2Ar)B(r)
and
do _ ., b NADOBM) (10)
dr = r [ ZRANB(r)

where b is the impact parameter of the light ray (Chandrasekhar|1983)), which may be considered
as a constant of the motion (Teyssandier|2010).

In what follows, we may assume that the light ray does not pass through a periastron, since
the well-known analytic extension theorem ensures that each formula giving 7™ as a function
of x, and x; is valid provided that the ray remains confined to a region of ‘weak field’ (» > m at
each point of the ray). As a consequence the signs in Eqs. (9) and (I0) may be taken as positive
without loss of generality, which implies r, > r, and ¢, > ¢,. Then Eq. (@) yields

rdr

’ ) 11
jr:\ VANBDIr? - PPANB(r)] (n

1
T (Xp,X5) = Z

The expression of the impact parameter of the ray as a function of x, and x, may be obtained
by solving for b the ‘constraint equation’ obtained by integrating Eq. (I0) along the light ray. On
our assumptions, this equation reads

b NANB()
T Alr: = B2AMB(r)

Let us denote by r, the usual Euclidean distance between the center of the massive body and
the straight line passing through x, and x;, namely

s~ Pa = dr. 12)

Tl

|, —x,

1y X 1l (13)

Te

Our method consists in iteratively solving Eq. (I2) for b by assuming that the impact parameter
admits an expansion in powers of m/r, as follows

1+Z(?) qn}, (14)

n=1

b=r,

where the coefficients g, are functions of x, and x; to be calculated.
Substituting for b from Eq. (I4) into Eq. (I1) shows that each perturbation term in Eq. (3)
may be written as

” 1{m\" s(n) 5\ 2+l
T (xA,xu)=;(r—C) Z Ans(‘il,u-,%)x‘fm (V_c) mdﬂ (15)

s=1-n
where s(1) = 2,s(n) = 2n — 1 for n > 2 and the quantities A,,(qi,...,q,) are polynomials in

q1,...,qy,. Each integral in Eq. (T3) is easy to calculate. Equation (I2)) enables to determine each
coeflicient g;. Indeed, inserting Eq. (I4) into Eq. (I0) yields the expansion

2n-1 2n+1

de 1. 1 1 o (m)" r\ r;
i 7—+V_CZ(Z) X Z an(Cll,---»Qn)(r—C) A=y (16)

2 _ 42
r T n=1 s=1-n

c



Teyssandier & Linet: Time transfer function and propagation... 1027

where the quantities B,(qi, .. ., g,) are also polynomials in gy, . . ., g,. In view of the fact that
"B p. dr _
r '—;»2 — r% - SOB 90A9

it results from Eq. (I6) that Eq. (12) is equivalent to the infinite set of equations

2n—1 s 2n+]dr
Z ns(ql’n"qrt)f ( ) (r2_r2)(2n+l)/2 =0, (a7

s=1-n

where n = 1,2, ... The coefficients B,(q1, - ..,q,) are linear in g,. So, it will be easy to solve Eq.
(ID) for g, when n = 1. Knowing g1, g» will be then determined by Eq. (I7) written for n = 2,
and so on. Thus the whole sequence of the g, may be iteratively calculated.

4. The third-order terms

Equations (@) and () are easily recovered by this method. The determination of the 3rd-order
term is scarcely any more complicated. We find

TO(ex,) = +1 m ( 1 . 1 ) “ lxs—x,| [Karccos(nA.nB) (o 1)?

c rarg\ra rp 1+ n,.n, |m, X ng| 1+ n,.n,
8 6e+3
L AB-1)- By +6€+ 363 + 3 (18)
4(y+1)

In the Schwarzschild space-time « = 15/4 and (88y + 6€ + 363 + y3)/4(y + 1) = 9/4.

5. Concluding remarks

The calculations required by the method of constrained integration can be performed with any
symbolic computation program. It is worthy of note that recovering the well-known expressions
of 7 and 7 constitutes a nice test of reliability for the new procedure.
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